Highlights from the OPNT test results at a US Tier-1 telecom lab

ITSF 2018, Bucharest

Marc Weiss, presenter
A. Savencu, C. van Tour, M. Johnson, J.C.J. Koelemeij

What was done

- Work in lab of a Tier-1 US telecom carrier simulates their actual network
- Measured the accuracy and stability of OPNT White Rabbit (WR) time signals
- Equipment from four different WDM vendors used
- WR inserted onto networks using OPNT filters to mix WR signals with other wavelengths
- Using the Optical Supervisory Channel (OSC) with one vendor- allows insertion of filters without service disruption, but only certain equipment provides the connection
- Also using S band wavelength for the WR
- Equipment Calibration (back-to-back) and Link Calibration (delay asymmetry due to chromatic dispersion)
- Measurements made with and without Optical Amplifiers
- Results reported here: Phase plot, Stats, ADEV, TDEV (emphasized)

Contents

1. Overview of Measurements \& Measurement Setup
2. Noise Floor Measurement
3. Vendor 1 (V1) - OSC Wavelength -140 km - Without Optical Amplifier
4. Vendor 1 (V1) - OSC Wavelength -140 km - With Optical Amplifier
5. Vendor 1 (V1) - S-Band Wavelength -140 km - With Optical Amplifier
6. Vendor 2 (V2) - S-Band Wavelength -100 km - Without Optical Amplifier
7. Vendor 3 (V3) - S-Band Wavelength -80 km - Without Optical Amplifier
8. Vendor 4 (V4) t-S-Band Wavelength - 90 km - Without Optical Amplifier
9. Overview of Results
10.Vendor 4 (V4) - S-band Wavelength - 90 km - Without Optical Amplifier - 11 day run

1. Overview of Measurements \& Measurement Setup, Schematic Overview \& Results

Overview of the measurements

WDM System	Wave- lengths	Fiber Length (km)	Optical Amplifier
V1	OSC	140	Without
V1	OSC	140	With
V1	S band	140	With
V2	S band	100	Without
V3	S band	80	Without
V4	S band	90	Without

The OPNT Timing Switches make use of the White Rabbit (WR) protocol developed at CERN (https://www.ohwr.org/projects/white-rabbit).

* The wavelengths of the OPNT Timing signals are:
- OSC: $1511.81 \mathrm{~nm} / 1511.05 \mathrm{~nm}$ (ITU DWDM Grid)
- S band: $1470 \mathrm{~nm} / 1490 \mathrm{~nm}$

[^0] OPNT Bi-Directional Optical Amplifier

General Measurement Setup

The pulse-per-second (PPS) output of the Master Timing Switch and the Slave Timing Switch are directly compared with each other using a Time Interval/Frequency counter.
2. Noise Floor Measurement, Schematic Overview \& Results

3. Vendor 1 (V1) - OSC Wavelength - 140 km - Without Optical Amplifier Schematic Overview

This OSC method is covered by a patent: US Patent 9331844 B2, R.J.W.M Nuijts, J.C.J. Koelemeij

3. V1 - OSC Wavelength - $\mathbf{1 4 0} \mathbf{k m}$ - Without Optical Amplifier, Results

Statistics	
Duration (s)	57600
Mean (ps)	0.04
Standard Deviation (ps)	22.16
Standard Error (ps)	0.09

4. Vendor 1 (V1) - OSC Wavelength - 140 km - With Optical Amplifier

Schematic Overview

4. V1 - OSC Wavelength - $\mathbf{1 4 0} \mathbf{~ k m ~ - ~ W i t h ~ O p t i c a l ~ A m p l i f i e r , ~ R e s u l t s ~}$

Statistics	
Duration (s)	600
Mean (ps)	24.62
Standard Deviation (ps)	21.85
Standard Error (ps)	0.89

5. Vendor 1 (V1) - S-Band Wavelength - 140 km - With Optical Amplifier

 Schematic Overview
5. V1 - S-Band Wavelength - 140 km - With Optical Amplifier, Results

Statistics	
Duration (s)	3600
Mean (ps)	87.31
Standard Deviation (ps)	20.74
Standard Error (ps)	0.35

6. V2 - S-Band Wavelength - 100 km - Without Optical Amplifier See results in summary

Schematic Overview

7. V3 - S-Band Wavelength - 80 km - Without Optical Amplifier Similar to case 6, but with different vendor and fiber length - see results in summary

Schematic Overview

8. V4 - S-Band Wavelength - 90 km - Without Optical Amplifier Similar to case 6, but with different vendor and fiber length

- see results in summary

Schematic Overview

9. Overview of Results

Color Index	WDM System	Wavelengths	Fiber Length (km)	Optical Amplifier	Duration (s)	Mean (ps)	Standard Deviation (ps)
-	V1	OSC	140	Without	57600	0.04	22.16
-	V1	OSC	140	With	600	24.62	21.85
-	V1	S band	140	With	3600	87.31	20.74
-	V2	S band	100	Without	1200	-54.44	24.25
-	V3	S band	80	Without	57600	30.78	24.03
-	V4	S band	90	Without	1200	67.85	19.82

10. V4 - S-band Wavelength - 90 km - Without Optical Amplifier, Results 11 day run

Conclusions

- We have shown that accuracies in the 10 's of ps are possible over up to 140 km in a US tier-1 telecom network
- Using the OSC
- Allows insertion of filters without disruption of service
- Seems to have the best accuracy, at least in this test
- Requires that equipment have this available
- TDEV stabilities under 10 ps after a few seconds
- ADEV frequency stability under 1 part in 10^{15} at about 1 day
- WR provides not only time and frequency, but also 1 Gb/s connectivity and switching!

[^0]: ** The OPNT Timing signals can be amplified with an

