Highlights from the OPNT test results at a US Tier-1 telecom lab

ITSF 2018, Bucharest

Marc Weiss, presenter A. Savencu, C. van Tour, M. Johnson, J.C.J. Koelemeij

What was done

- Work in lab of a Tier-1 US telecom carrier simulates their actual network
- Measured the accuracy and stability of OPNT White Rabbit (WR) time signals
- Equipment from four different WDM vendors used
- WR inserted onto networks using OPNT filters to mix WR signals with other wavelengths
 - Using the Optical Supervisory Channel (OSC) with one vendor
 – allows insertion of filters
 without service disruption, but only certain equipment provides the connection
 - Also using S band wavelength for the WR
 - Equipment Calibration (back-to-back) and Link Calibration (delay asymmetry due to chromatic dispersion)
- Measurements made with and without Optical Amplifiers
- Results reported here: Phase plot, Stats, ADEV, TDEV (emphasized)

Contents

- 1. Overview of Measurements & Measurement Setup
- 2. Noise Floor Measurement
- 3. Vendor 1 (V1) OSC Wavelength 140 km Without Optical Amplifier
- 4. Vendor 1 (V1) OSC Wavelength 140 km With Optical Amplifier
- 5. Vendor 1 (V1) S-Band Wavelength 140 km With Optical Amplifier
- 6. Vendor 2 (V2) S-Band Wavelength 100 km Without Optical Amplifier
- 7. Vendor 3 (V3) S-Band Wavelength 80 km Without Optical Amplifier
- 8. Vendor 4 (V4) t S-Band Wavelength 90 km Without Optical Amplifier
- 9. Overview of Results

10.Vendor 4 (V4) – S-band Wavelength – 90 km – Without Optical Amplifier – 11 day run

1. Overview of Measurements & Measurement Setup, Schematic Overview & Results

WDM System	Wave- lengths	Fiber Length (km)	Optical Amplifier
V1	OSC	140	Without
V1	OSC	140	With
V1	S band	140	With
V2	S band	100	Without
V3	S band	80	Without
V4	S band	90	Without

Overview of the measurements

General Measurement Setup

The OPNT Timing Switches make use of the White Rabbit (WR) protocol developed at CERN (https://www.ohwr.org/projects/white-rabbit).

- * The wavelengths of the OPNT Timing signals are:
 - OSC: 1511.81 nm/1511.05 nm (ITU DWDM Grid)
 - S band: 1470 nm/1490 nm
- ** The OPNT Timing signals can be amplified with an OPNT Bi-Directional Optical Amplifier

The pulse-per-second (PPS) output of the Master Timing Switch and the Slave Timing Switch are directly compared with each other using a Time Interval/Frequency counter.

2. Noise Floor Measurement, Schematic Overview & Results

3. Vendor 1 (V1) – OSC Wavelength – 140 km – Without Optical Amplifier Schematic Overview

This OSC method is covered by a patent: US Patent 9331844 B2, R.J.W.M Nuijts, J.C.J. Koelemeij

3. V1 – OSC Wavelength – 140 km – Without Optical Amplifier, Results

4. Vendor 1 (V1) – OSC Wavelength – 140 km – With Optical Amplifier Schematic Overview

4. V1 – OSC Wavelength – 140 km – With Optical Amplifier, Results

Statistics					
Duration (s)	600				
Mean (ps)	24.62				
Standard Deviation (ps)	21.85				
Standard Error (ps)	0.89				

5. Vendor 1 (V1) – S-Band Wavelength – 140 km – With Optical Amplifier Schematic Overview

5. V1 – S-Band Wavelength – 140 km – With Optical Amplifier, Results

Statistics					
Duration (s)	3600				
Mean (ps)	87.31				
Standard Deviation (ps)	20.74				
Standard Error (ps)	0.35				

6. V2 – S-Band Wavelength – 100 km – Without Optical Amplifier See results in summary

Schematic Overview

7. V3 – S-Band Wavelength – 80 km – Without Optical Amplifier Similar to case 6, but with different vendor and fiber length – see results in summary Schematic Overview

8. V4 – S-Band Wavelength – 90 km – Without Optical Amplifier Similar to case 6, but with different vendor and fiber length – see results in summary Schematic Overview

9. Overview of Results

Color Index	WDM System	Wavelengths	Fiber Length (km)	Optical Amplifier	Duration (s)	Mean (ps)	Standard Deviation (ps)
—	V1	OSC	140	Without	57600	0.04	22.16
	V1	OSC	140	With	600	24.62	21.85
	V1	S band	140	With	3600	87.31	20.74
	V2	S band	100	Without	1200	-54.44	24.25
_	V3	S band	80	Without	57600	30.78	24.03
_	V4	S band	90	Without	1200	67.85	19.82

10. V4 – S-band Wavelength – 90 km – Without Optical Amplifier, Results 11 day run

Conclusions

- We have shown that accuracies in the 10's of ps are possible over up to 140 km in a US tier-1 telecom network
- Using the OSC
 - Allows insertion of filters without disruption of service
 - Seems to have the best accuracy, at least in this test
 - Requires that equipment have this available
- TDEV stabilities under 10 ps after a few seconds
- ADEV frequency stability under 1 part in 10¹⁵ at about 1 day
- WR provides not only time and frequency, but also 1 Gb/s connectivity and switching!

